Transformation of Functions

When a function is transformed, several changes to its graph are possible. The graph can shift right / left / up / or down. It can stretch or compress vertically or horizontally. It can also be reflected horizontally across the y-axis (the line $x=0$) or reflected vertically across the x-axis (the line $y=0$).

It is allowable to apply two or more transformations to a function at the same time. When applying more than one transformation, the order they are applied does make a difference in some situations and no difference in others. Take $f(x)=x^{2}$ for example. If you flip it first and then add $2\left(y=-x^{2}+2\right)$ you will not get the same graph as adding 2 first and then flipping it $\left(y=-\left(x^{2}+2\right)\right.$. Be sure to follow the order of operations when evaluating the transformed function to get the correct graph.

Follow this link:
https://www.desmos.com/calculator
to graph all 3 functions above on the same graph and you will see how the transformations are different. Use the order of operations when evaluating a function for its x-values to be sure to get the correct y-values.

Vertical Transformations are the result of modifying the output (y)

To shift the graph up or down:

- To shift the graph up, add a non-negative, non-zero number a to the output $f(x)$. For example to move $f(x)=x^{2}$ up five units you add 5 to the function to get the transformed function $g(x)=x^{2}+a$ which becomes $g(x)=x^{2}+5$.
- To shift the graph down, subtract a non-negative, non-zero number a from the original function to get the transformed function. For example to move $f(x)=x^{3}$ down 2 units, subtract 2 from the original function. $f(x)-2$ becomes $g(x)=x^{3}-2$.

To stretch or compress the graph vertically:
Multiply the output (y) by a non-zero, non-negative constant a.

- To stretch (expand) the graph vertically:

If a >1, each point on the original graph will stretch vertically from the line $y=0$ (the x-axis) by the factor a. If for example a point was 3 units above
the x-axis on the original graph and the graph was stretched vertically by a factor of 2 , the corresponding point of the vertically stretched graph would be twice the vertical distance from the original point which would be 6 units above the x-axis. If a point on the original graph is 4 units below the x-axis, the transformed point will be 8 units below the x-axis. For this example take the y-value of any point on the original graph and multiply it by 2 and you will get the corresponding y-value of the transformed point.

- To compress (shrink) the graph vertically: If $0<a<1$, each point on the original graph will compress vertically from the line $y=0$ (the x-axis) by the factor a. If for example a point was 10 units above the x-axis on the original graph and the graph was compressed vertically by a factor of $1 / 2$, the corresponding point of the vertically compressed graph would be half the vertical distance from the original point which would be 5 units above the x-axis. If a point on the original graph is 12 units below the x-axis, the transformed point will be 6 units below the x-axis. For this example take the y-value of any point on the original graph and multiply it by $1 / 2$ and you will get the corresponding y-value of the transformed point.

To reflect over the x-axis (the line $y=0$):

- Multiply the whole function by -1 .

Horizontal Transformations are the result of modifying the input \mathbf{x}

This is the easy way to think about it:
Just do the opposite of what you think you should do (except when flipping the graph over the y-axis, in this case just multiply x by -1).

To shift the graph left or right horizontally:

To shift the graph left 3 units, you would think that you need to subtract 3 from x but that is not what you need to do. Do the opposite, you have to add 3 to x. To shift the graph to the right 4 units you would think that you have to add 4 to x but do the opposite instead. You have to subtract 4 from x to move the graph right 4 units.

To compress or stretch the graph horizontally:
To stretch it by $5 / 3$ you multiply x by the reciprocal which is $3 / 5$. To compress it by $1 / 2$ you multiply x by 2 which is the reciprocal of $1 / 2$.

To reflect (flip) the graph over the y-axis (the line $x=0$): Multiply x by -1 .

This is the mathematical explanation of horizontally shifting, stretching, compressing, and reflecting graphs (it may seem confusing).

To shift the graph right or left:
Put the function into this pattern:
$(x-h)$. The value of h is what you are adjusting the value of x with.

- If h is positive the graph moves to the right h units. So ($x-4$) would move the graph 4 units to the right. For example, shifting $y=x^{2}$ four units right would look like this: $y=(x-4)^{2}$.
- If h is negative the graph moves left. For example, $(x+3)$ would be rewritten in the correct pattern as $(x-3)$. h must be after the first minus sign. In this case h is negative and would move the graph to the left 3 units. For example, shifting $y=x^{2}$ three units left would look like this: $y=(x--3)^{2}$ which simplifies to $y=(x+3)^{2}$.

To stretch or compress the graph horizontally: Multiply x by a non-negative, non-zero number $1 / a$. If a is not a fraction, make it a fraction by putting it over 1.

- To stretch (expand) a graph horizontally away from the y-axis, a must be greater than 1 which makes the reciprocal of a, 1/a, less than 1 . You need to multiply x in the function by the reciprocal of a which is $1 / a$. The graph will stretch (expand) horizontally away from the y-axis (the line $x=0$) by the factor a. For example, if $a=2$, $(1 / a=1 / 2)$ you are stretching the graph by a factor of 2 . The x-coordinate of each point on the graph will be multiplied by 2 to get the x-coordinate of the transformed point. Consider transforming the function $y=x^{2}$ by doubling the horizontal distance of each point from the y-axis to get the transformed function $y=((1 / 2) x)^{2}$. On the original function, the point $(-2,4)$ has a corresponding transformed point $(-4,4)$ which is twice the distance horizontally from its original point. The point $(-1,1)$ on the original function has a corresponding point $(-2,1)$ which is twice the horizontal distance from the y-axis as the original point. Additionally the point $(2,4)$ on the original function transforms to $(4,4)$ on
the transformed function (twice the horizontal distance as the original point).
- To compress (shrink) a graph horizontally towards the y-axis, a must be less than 1. The graph will compress (shrink) horizontally towards the y axis (the line $x=0$) by the factor a. For example, if $a=1 / 3(1 / a=3)$ then the graph will compress (shrink) horizontally towards the y-axis by a factor of $1 / 3$. Consider transforming the function $y=x^{2}$ by compressing the horizontal distance of each point from the y-axis by $1 / 3$ to get the transformed function $y=(3 x)^{2}$. On the original function the point $(-6,36)$ has a corresponding transformed point $(-2,36)$ which is one-third the distance horizontally from the y-axis than the original point is. The point $(-3,9)$ on the original function has a corresponding point $(-1,9)$ which is one-third the horizontal distance from the y-axis as the original point. Additionally the point $(3,9)$ on the original function transforms to $(1,9)$ on the transformed function (one-third the horizontal distance from the y-axis as the original point).

To reflect the graph over the y-axis: Multiply x by -1 . The graph will flip (reflect) over the y-axis but it won't stretch or compress.

